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Abstract. Four-wave mixing in resonant atomic vapors based on maximum coherence induced by Stark-
chirped rapid adiabatic passage (SCRAP) is investigated theoretically. We show the advantages of a cou-
pling scheme involving maximum coherence and demonstrate how a large atomic coherence between a
ground and an highly excited state can be prepared by SCRAP. Full analytic solutions of the field propa-
gation problem taking into account pump field depletion are derived. The solutions are obtained with the
help of an Hamiltonian approach which in the adiabatic limit permits to reduce the full set of Maxwell-
Bloch equations to simple canonical equations of Hamiltonian mechanics for the field variables. It is found
that the conversion efficiency reached is largely enhanced if the phase mismatch induced by linear refrac-
tion is compensated. A detailed analysis of the phase matching conditions shows, however, that the phase
mismatch contribution from the Kerr effect cannot be compensated simultaneously with linear refrac-
tion contribution. Therefore, the conversion efficiency in a coupling scheme involving maximum coherence
prepared by SCRAP is high, but not equal to unity.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light –
42.65.Ky Harmonic generation, frequency conversion – 32.80.Qk Coherent control of atomic interactions
with photons

1 Introduction

Nonlinear frequency conversion processes in atomic or
molecular gases have attracted much attention since the
early days of nonlinear optics. The interest is mainly mo-
tivated by the possibility to generate coherent radiation
in the XUV and VUV frequency range, where there are
no transparent nonlinear crystals. However, the conver-
sion efficiencies are usually relatively poor due to small
nonlinear susceptibility for the generation and difficulties
to prepare proper phase matching conditions. Approach-
ing atomic resonances enhances the nonlinearity, but at
the same time absorption, linear refraction and unwanted
nonlinear phase shifts increase rapidly.

Recently, a new technique has been put forward which
substantially improves the nonlinear-optical properties of
a medium. The technique, usually referred to as “nonlinear
optics with maximum coherence”, is based on the prepa-
ration of all atoms in the medium in the same coherent
superposition of two states |1〉 and |2〉 with equal proba-
bility amplitudes [1]. From the classical point of view, co-
herently prepared atoms represent an ensemble of dipoles
all oscillating at the same frequency ω21, with the same
phase and with maximum amplitude. If a radiation field
of frequency ω3 is applied to the medium, it will beat
against this strong local oscillator to produce the sum-
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or difference frequency ω21 ± ω3. In this case, the non-
linear susceptibility of the generation process is large (in
fact, it is resonantly enhanced) and is of the same order
as the linear susceptibility. Therefore, complete conver-
sion occurs within an optical length smaller than the co-
herence length. Consequently, requirements for the phase
matching are substantially alleviated and the influence of
density-dependent detrimental effects is minimized.

In first proposals and experimental implementa-
tions [1,2], maximum coherence was established in a
lambda-type coupling scheme with ground |1〉 and lower
excited |2〉 states using stimulated Raman adiabatic pas-
sage (STIRAP) [3]. However, in a lambda-type coupling
scheme involving one-photon transitions the generated
radiation ω21 ± ω3 cannot reach far into the vacuum-
ultraviolet spectral region [2]. Multi-photon excitations
may not be used in order to reach higher lying states,
because laser-induced Stark shifts, which are intrinsic to
multi-photon transitions, perturb the adiabatic popula-
tion dynamics and prohibit the preparation of a maximum
coherence [4].

In the present paper, we investigate the use of the
Stark Chirped Rapid Adiabatic Passage (SCRAP) tech-
nique [5–7] to prepare maximum coherence. In SCRAP,
a pump laser couples a thermally populated state (most
likely the ground state) to an excited state and a second,
strong radiation pulse induces a dynamic Stark shift. This
Stark shift serves to sweep the atomic transition frequency
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through resonance with the pump laser frequency, medi-
ating thereby an adiabatic passage of population between
two states. Provided the dynamic Stark shifts, induced by
the second laser are larger than the shifts, induced by the
pump field, any multi-photon transition may be used for
the pump transition. For a two-photon pump transition, it
is therefore possible to create coherence between a highly
excited state and the ground state. If ultraviolet radiation
is used for the pump laser, coherence between states with
energies up to 10 eV may be efficiently created, permitting
the generation of VUV radiation well below 150 nm.

The potential of the nonlinear optics with maximum
coherence has been demonstrated for the regime of un-
depleted coherence and hence for an undepleted pump
field [1]. We consider here a process of difference-frequency
mixing involving a two-photon transition |1〉− |2〉 reso-
nantly excited by a strong pump field with frequency ω1

and a dipole-allowed transition |2〉− |3〉 excited off-
resonance by an “idler” field with frequency ω2 (Fig. 1).
In this case, energy for the generated field is taken only
from the pump field, which at the same time participates
in the preparation of the coherence. Therefore, it will un-
avoidably be depleted if considerable conversion efficiency
is expected. It is the aim of the present work to clarify, how
the conversion proceeds when the pump field is depleted,
what fraction of the total energy of the pump field may be
transferred to the generated (and idler) field, and which
parameters are needed in the specific case of coherence
preparation by SCRAP. To this end, we solve the non-
linear propagation problem taking into account the pump
field depletion. The solution of such a nonlinear problem
is particularly challenging for pulses and is in general pos-
sible only numerically. In order to obtain analytical solu-
tions we apply the so-called Hamiltonian approach [8–10]
which allows for a solution in a wide range of physically
relevant situations. An essence of this formalism is to re-
duce a set of Maxwell propagation equation to canonical
Hamilton equations of classical mechanics, which admit
several integrals of motion. Additionally, this approach
allows to analyze phase matching conditions taking into
account intensity-dependent (Kerr effect) contributions,
which are not present in the simple treatment of unde-
pleted coherence. This approach is especially useful under
adiabatic conditions, i.e. when the atoms are excited by
the laser pulses in such a way that they remain in the same
instantaneous eigenstate of the interaction Hamiltonian
during the entire process. This is the case for preparation
of the atomic superposition by SCRAP, as it is discussed
here.

Obviously the large atomic coherence should be main-
tained for the duration of the conversion process. Since the
coherent superposition includes a highly excited state, this
requirement restricts the conversion to a regime with laser
pulses of duration shorter than the natural lifetimes in the
system. This is however not in contradiction with the adia-
baticity of SCRAP. The adiabatic approximation requires
a slow rate of evolution as compared to the frequency sep-
aration of the adiabatic eigenstates. This results usually
in a requirement for the product of the pulse duration and
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Fig. 1. Resonant four-wave
mixing with maximum coher-
ence between |1〉 and |2〉 adia-
batically prepared by a strong
drive ω1 field and a “Stark-
shifting” far-off-resonance ωs

field.

the Rabi frequency of the radiation field to be much larger
than unity. Thus, for sufficiently intense fields, the process
can be adiabatic even for short pulses. In the present pa-
per, we consider the frequency conversion of short pulses
and disregard spontaneous relaxation processes.

The paper is organized as follows. In Section 2 we
discuss general features and advantages of nonlinear fre-
quency conversion processes with respect to atomic co-
herence. The coherence is assumed to be undepleted. In
Section 3 the preparation of large atomic coherence by
SCRAP is described. Section 4 and Appendix outline the
Hamiltonian approach in nonlinear optics. Making use of
this formalism we derive analytic solutions for frequency
conversion processes involving maximum coherence in Sec-
tions 5 and 6. Section 5 is devoted to solutions at small
propagation distances in which the pump field is not de-
pleted. Conclusions of Section 2 are confirmed and specific
phase matching conditions for the SCRAP method are de-
rived. In Section 6 full analytical solutions are obtained
taking into account depletion of the driving field. In Sec-
tion 7 we discuss the conditions for phase matching with
respect to the compensation of phase mismatch, induced
by linear refraction and the Kerr effect simultaneously.
Finally, in Section 8, we consider the spatio-temporal dy-
namics of the generated radiation pulse as well as the evo-
lution of the total conversion efficiency. Conclusions are
presented in Section 9.

2 Frequency conversion with undepleted
atomic coherence

The (pulsed) e.m. field propagating in an ensemble of
three-level atoms (Fig. 1) is assumed to consist of three
components with carrier frequencies ω1, ω2 and ω3 =
2ω1 − ω2:

E(z, t) =
∑

j

(Ej(z, t) exp(−i(ωjt− kjr)) + c.c.) . (1)

Here |kj | = njωj/c with the refractive index nj at fre-
quency ωj describing refraction due to levels outside the
three-level system in Figure 1. The radiation pulses are
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supposed to be shorter than the relaxation times in the
atomic system. The waves k2 and k3 propagate at small
angles with respect to the vector k1 (the z-axis).

In the approximation of slowly varying amplitudes and
phases Maxwell’s propagation equations read in a moving
frame

∂Ej

∂z
= i2π

ωj

c
Pj , (2)

where Ej and Pj (j = 1, 2, 3) are functions of the coordi-
nate z and the retarded time τ = t− z/c.

Pj are the components of the medium polarization:

P =
∑

j

(
Pj exp(−i(ωjt− kjr)) + c.c.

)
.

The pulse at frequency ωs (“ac Stark-shifting pulse”)
propagates along the z-axis and is far detuned from any
atomic state. Therefore, we assume that its intensity does
not change along the propagation path. In reality, the
presence of the pulse at ωs leads to generation of 2ω1±ωs

frequency components. However, an efficiency of their gen-
eration is much smaller than that for the ω3 field due to
the off-resonant character of the interaction of the ωs pulse
with the medium. Moreover, the presence of these (weak)
components does not influence processes considered in the
present paper. Therefore, we disregard both the change of
the ωs pulse intensity and the generation of 2ω1±ωs com-
ponents. The purpose of using the ωs pulse is discussed
later, in Section 3.3.

First we consider the situation of resonant nonlin-
ear optics with maximum coherence for constant ampli-
tudes c1 and c2 of the states |1〉 and |2〉, prepared and
maintained by a strong pump field at ω1. The back-action
of the atoms to this field is disregarded and thus the corre-
sponding coupling does not need to be taken into account.
In this regime the number of photons in the prepara-
tory field(s) must be much larger than the number of
atoms in the propagation volume. Additionally, the pre-
pared atomic coherence remains undepleted if the number
of generated ω3 photons is much smaller than the number
of the atoms in the relevant volume.

The components of the medium polarization can be ex-
pressed in terms of the atomic probability amplitudes cn
in levels |1〉, |2〉 and |3〉. After substitution into the
Maxwell equation (2), one derives the field propagation
equations [1,11,10]:

∂E∗
2

∂z
= i

πNω2d
2
2

�c∆3
|c2|2 E∗

2 + i
πNω2d2d3

�c∆3
ρ12ei∆kzE3, (3)

∂E3

∂z
= i

πNω3d
2
3

�c∆3
|c1|2 E3 + i

πNω3d2d3

�c∆3
ρ12e−i∆kzE∗

2 , (4)

where N is the density of active atoms, d2(3) are the dipole
moments of transitions |2〉 → |3〉 (|1〉 → |3〉), ∆3 is the
frequency detuning indicated in Figure 1:

∆3 = ω3 − ω31, (5)

with ωnl denoting the transition frequencies between the
corresponding levels. The atomic coherence between the

states |1〉 and |2〉 is ρ12 = |c1c∗2|, and ∆k is the “residual”
(background) phase mismatch:

∆k = k12 − k2 − k3, (6)

with kj (j = 2, 3) being the projections of kj on the z-axis.
The wave vector k12 of the atomic coherence c∗1c2 is related
to the wave vector k1 of the pump field [1,11]. In the
case of two-photon excitation of the |1〉 → |2〉 transition,
considered in the present work, we have: k12 = 2k1.

When deriving equations (3, 4), we disregarded a con-
stant phase of the atomic transition loop, and assumed
large detuning |∆3| � Ωj , with Ω2 and Ω3 being the
Rabi frequencies for transitions |2〉 − |3〉 and |1〉 − |3〉, re-
spectively:

Ωj =
|djEj|

2�
· (7)

Equations (3, 4) are linear differential equations, which
can easily be solved. We consider the case in which no E3

field is incident on the medium, E3 (z = 0) = 0. Introduc-
ing the normalized intensity (photon flux)

ηj =
Ij

�ωj
≡ c |Ej |2

8π�ωj
(8)

and the coupling strength

µj =
2πωjd

2
j

�c
, (9)

the solution of equations (3, 4) reads:

η2(z) = η20 cosh2


κz

√
1 −

(
∆k′

2κ

)2



+
η20

(
∆k′
2κ

)2

1 − (
∆k′
2κ

)2 sinh2


κz

√
1 −

(
∆k′

2κ

)2

 , (10)

η3(z) =
η20

1 − (
∆k′
2κ

)2 sinh2


κz

√
1 −

(
∆k′

2κ

)2

 , (11)

where η20 = η2(z = 0) is the photon flux at the entrance
to the medium. We have introduced the conversion coef-
ficient κ:

κ =
N

2

√
µ2µ3

∆3
ρ12, (12)

and

∆k′ = ∆k +
N

2
µ3 |c1|2 + µ2 |c2|2

∆3
(13)

is the total phase mismatch, including the background
value ∆k and the contributions from resonant transitions
|1〉 → |3〉 and |2〉 → |3〉.

The solution of equations (10, 11) shows that there is
parametric gain (exponential growth of intensity) for both
ω2 and ω3 waves with the rate κ if the phase mismatch
is compensated, ∆k′ ≈ 0. Since this rate is proportional
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to ρ12, it is obviously advantageous to prepare atoms with
large coherence on the |1〉 → |2〉 transition.

Phase match,

2∆k
N

≈ −µ3 |c1|2 + µ2 |c2|2
∆3

,

can be achieved in several ways:

(i) by tuning the wave vector k21 of the atomic coherence
(e.g., via the detuning ∆2 of the pump field, as in
Refs. [1,11]),

(ii) by introducing a small angle of the ω2 wave propa-
gation direction from the z-axis,

(iii) by selecting the appropriate detuning ∆3,
(iv) and/or by preparation of atoms in a superposition

with suitable amplitudes c1, c2.

The resonant contributions to the phase mismatch,
equation (13), are usually the dominant ones over the
residual value ∆k. When phase matching is not main-
tained, the quantity

1 − (∆k′/2κ)2 ≈ −
(
µ3 |c1|2 − µ2 |c2|2

)2

4µ2µ3ρ2
12

is negative, i.e. no parametric gain but periodic change of
intensity along the propagation path takes place:

η3(z) = η20
4µ2µ3ρ

2
12(

µ3 |c1|2 − µ2 |c2|2
)2

× sin2


N

2

∣∣∣µ3 |c1|2 − µ2 |c2|2
∣∣∣

2∆3
z


 . (14)

Moreover, in this regime, a substantial transfer of en-
ergy occurs for the maximum coherence, ρ12 ≈ 1/2, case,
whereas it is small for the regime of conventional non-
linear optics (weak excitation, |c2|2 � |c1|2 ≈ 1). The
amount of converted energy is larger for maximum coher-
ence than for the conventional nonlinear optics by a factor
of the order of |c2|−2 � 1. We stress that the assumption
of undepleted coherence assumes that the number of gen-
erated ω3 photons is much smaller than the number of
photons in the preparatory field(s). Correspondingly, the
total efficiency of energy conversion (from preparatory to
generated fields) is very small in this regime.

The regime of undepleted atomic coherence corre-
sponds to the classical picture of frequency mixing in
which the atoms play the role of a local oscillator (fre-
quency ω21) with the “probe” ω2 field beating against it to
produce the difference (or sum-) frequency ω3 = ω21 ±ω2.
Such a process is obviously more efficient for a strong lo-
cal oscillator, i.e., for large ρ12. Thus, the preparation of a
large atomic coherence is favorable for frequency conver-
sion in atomic gases.

3 Preparation of maximum coherence
by SCRAP

3.1 Atomic parameters

First we discuss the specific parameters to be considered
in the coupling scheme discussed here (Fig. 1).

The Rabi frequencies of single-photon transitions Ωj

(j = 2, 3) are related to the photon flux ηj , equation (8),
via the coefficients µj , equation (9), as

Ωj =
√
µjηj .

The phase of the Rabi frequency Ω1 for a two-photon
transition |1〉 → |2〉 is equal to 2ϕ1, and the module is
proportional to the intensity:

Ω1 =
1
4�
α12 (ω1) |E1|2 ≡ µ1η1, (15)

where µ1 is the transition coupling constant, and αnn′ (ωj)
is the matrix element of an atomic polarizability tensor:

µ1 =
2πω1

c
α12 (ω1) , (16)

�αnn′ (ωj) =
∑
m

[ 〈n| d |m〉 〈m| d |n′〉
(ωm − ωn1) − ωj

+
〈n| d |m〉 〈m| d |n′〉
(ωm − ωn′1) + ωj

]
, (17)

with �ωn1 being the energies of the resonant states |n〉
(n = 2, 3, with ω11 = 0), �ωm the energies of the (vir-
tual) states |m〉, and 〈n| d |m〉 the dipole moment matrix
elements for transitions |n〉 → |m〉 (n = 1, 2, 3).

The frequency detunings ∆n (n = 2, 3) include the
“static” detuning δn0, ac Stark shifts βnjηj induced by the
ωj (j = 1, 2, 3) fields, and the shifts Sn = βnsηs induced
by an intense far-off-resonant “SCRAP laser pulse” with
frequency ωs and photon flux ηs:

∆n = δn +
∑

j=1,2,3

βnjηj , (n = 2, 3), (18)

δn = δn0 + Sn, (19)

βnj =
2πωj

c
(αnn (ωj) − α11 (ωj)) , (20)

δ30 = ω3 − ω31, δ20 = 2ω1 − ω21.

It is important to note some essential relationships be-
tween the atomic parameters used in the present work.

For atomic media the off-resonant (background) con-
tributions to the refractive index nj are expected to be of
the order of [12]:

nj ≈ 1 + 2πNα11 (ωj) . (21)

The residual phase mismatch ∆k = 2k1−k2−k3 is there-
fore of the order of

∆k ≈ 2πN
c

(2ω1α11 (ω1) − ω2α11 (ω2) − ω3α11 (ω3)) .

(22)
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It follows then from equations (16, 17, 20, 22) that the
quantities:

µ1 ∼ βnj ∼ ∆k/N

are all of the same order of the magnitude.
Further, we have from equations (9, 16, 17):

µ2,3

µ1
∼ |(ωm − ωn1) ± ωj| � δ30, δ20, |Ωj | . (23)

The last inequality is implied by the resonant three-level
model of the atom. The validity of this inequality justifies
the use of the rotating wave approximation.

Finally, we present values of the above constants for a
real atomic scheme, which can be used to drive the gen-
eration of short wavelength radiation. We consider a cou-
pling scheme in Kr with the states: |1〉 = 4p6 1S (ground
state), |2〉 = 4p5 5p [0, 1/2] (94 093.7 cm−1) and |3〉 = 4p5

5s [1, 1/2] (80 917.6 cm−1). The two-photon transition be-
tween the ground and the excited state in Kr is known as
an efficient transition for conventional four-wave mixing
schemes. The scheme discussed here has e.g. been used in
experiments on VUV generation assisted by electromag-
netically induced transparency [13,14]. The pump field at
212.55 nm excites the two-photon transition |1〉− |2〉, the
idler field at 759 nm is tuned near the single-photon res-
onance of the transition |2〉− |3〉, and the field generated
on the |3〉− |1〉 transition has a wavelength of 123.6 nm.
The coupling strength of the single-photon transitions
used in this scheme is: µ2 = 3.507 × 10−2 cm2 × s−1 and
µ3 = 0.441× 10−2 cm2 × s−1. The coupling strength µ1 of
the two-photon transition and the ac Stark coefficients β2j

can be estimated as µ1 ≈ 1.8 × 10−16 cm2, β21 ≈ 3.7 ×
10−17 cm2, β22 ≈ 2.2×10−17 cm2, β23 ≈ 6.4×10−17 cm2.
The residual phase mismatch for this scheme has been
measured [14], the value is: ∆k/N = 4.8 × 10−17 cm2.

3.2 Interaction Hamiltonian, eigenvalue equation

In rotating-wave approximation, the light-atom interac-
tion Hamiltonian is given by:

Ĥ = −� [∆2 |2〉 〈2| +∆3 |3〉 〈3|]
− �Ω1 |1〉 〈2| + �Ω2eiϕ |2〉 〈3| + �Ω3 |1〉 〈3| + h.c., (24)

where the multiphoton resonance condition

ω3 = 2ω1 − ω2 (25)

has been used.
In the present paper, we consider adiabatic light-atom

interaction processes, i.e. the atomic system can be as-
sumed to follow the evolution of the instantaneous eigen-
states. If, for example, the atomic system is at some initial
time t0 in the nondegenerate eigenstate |ψ0(t0)〉 of the in-
teraction Hamiltonian, i.e.

Ĥ |ψ0〉 = �λ0 |ψ0〉 , (26)

(which is usually the ground state of the atoms), it will
remain in this state |ψ0〉 at all times. Equation (26) yields
the characteristic equation for the eigenvalues:

λ0 (∆2 + λ0) (∆3 + λ0) −
(
Ω2

1 +Ω2
2 +Ω2

3

)
λ0

−Ω2
1∆3 −Ω2

3∆2 = −2Ω1Ω2Ω3 cosϕ, (27)

where the relative phase ϕ of the elm. waves is:

ϕ = 2ϕ1 − ϕ2 − ϕ3 −∆kz, (28)

which includes the residual phase mismatch ∆k.

3.3 Preparation of maximum coherence by SCRAP
procedure

In what follows, we will concentrate on a regime of non-
linear optics with large coherence between the states
|1〉 and |2〉. To prepare such a coherence efficiently, we
suggest to use the Stark Chirped Rapid Adiabatic Pas-
sage (SCRAP) method [5,6]. In the particular example
of three-level system in Figure 1, this procedure can be
realized when the idler ω2 field is far detuned from the
resonance with transition |2〉 − |3〉 (i.e., the static detun-
ing δ30 is much larger than other parameters including all
the Rabi frequencies and detuning ∆2). In this case, the
adiabatic (dressed) state that asymptotically connects to
|1〉 for t→ −∞ is given by:

|ψ0〉 ≈ Ω1√
λ2

0 +Ω2
1

|1〉 − λ0√
λ2

0 +Ω2
1

|2〉 , (29)

with corresponding energy eigenvalue

λ0 ≈ −1
2
∆2 +

1
2

√
∆2

2 + 4Ω2
1 . (30)

As it is obvious from these formulae, population can be
prepared from the bare state |1〉 in the dressed state |ψ0〉,
if at the beginning of the interaction∆2 → +∞. The state
|ψ0〉 will project completely onto the target bare state |2〉
at the end of the interaction, if ∆2 → −∞. Thus all the
population can be transferred from the ground to the ex-
cited state via the dressed state. For pulses with dura-
tion in the nanosecond range, this transfer process can
be implemented experimentally by sweeping the atomic
transition frequency with an additional laser pulse of fre-
quency ωs (see Fig. 1) inducing dynamic Stark shifts
(SCRAP). The pump and Stark shifting laser pulses have
to be delayed. Otherwise the effect of rapid adiabatic pas-
sage will occur twice, once in the rising, second in the
falling wing of the Stark shifting laser.

Figure 2 shows the population and coherence dynam-
ics induced in an atomic system driven by laser pulses
in SCRAP configuration. As described above, population
is transferred completely from the ground to the excited
state, as the atomic transition frequency is swept in the
falling edge of the Stark shifting laser pulse through reso-
nance with the pump laser (middle frame). The coherence
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Fig. 2. SCRAP procedure producing complete population
transfer and a pulse of large atomic coherence. Time evolu-
tion of the detuning ∆2 and the two-photon Rabi frequency
Ω1 (top frame), the populations of the |1〉 and |2〉 states (mid-
dle frame), and the coherence ρ12 (bottom frame).

ρ12 induced in the system during the interaction reaches
a maximum of 1/2 when the population is distributed
equally between the bare states |1〉 and |2〉. The system is
prepared in maximum coherence. This happens, however,
only at one instant of time, which results in a pulse of
large atomic coherence ρ12 (t). We note that the transient
large coherence ρ12 occurs also when the pump and Stark
shifting laser pulses coincide. As we show later, however,
such regime leads to quite low overal conversion efficiency
due to phase matching reasons.

While the coherence, induced by SCRAP, is not per-
manent, a slight modification of the process permits the
preparation of a long lasting maximum coherence (so-
called half-SCRAP) [6]. In this configuration the pump
laser is tuned to resonance, i.e. the static detuning δ20 = 0.
Figure 3 shows the population dynamics and the co-
herence induced in this case. At earlier times we have
∆2 � Ω1 so that the state |ψ0〉 coincides with the ground
state |1〉. When Ω1 increases, the adiabatic state |ψ0〉
evolves in a superposition |1〉 and |2〉. At the end of
the interaction the situation Ω1 � |∆2| is reached, and
the adiabatic state corresponds to “maximum coherence”:
|ψ0〉 = (|1〉 − |2〉) /√2. This regime requires to fix the
static detuning δ20 to zero with sufficient accuracy, but
it establishes the enduring coherence needed for phase
matching.

4 Hamiltonian approach formalism

In this work, we use an approach which does not re-
quire explicit expressions for the atomic amplitudes [8–10].
The main advantage of this approach is the reduction of
Maxwell propagation equations (2) to the form of canon-
ical Hamilton equations of classical mechanics involving
action and angle variables J and ϕ (see Appendix). Here
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ρ
12

Fig. 3. “Half-SCRAP” procedure leading to a permanent co-
herence after the interaction. Time evolution of the detuning
∆2 and the two-photon Rabi frequency Ω1 (top frame), the
populations of the |1〉 and |2〉 states (middle frame), and the
coherence ρ12 (bottom frame).

ϕ is the relative phase of e.m. waves, equation (28), and
the variable J(z) characterizes the amount of energy ex-
change between the waves and has the initial condition
J(z = 0) = 0:

η1(z) = η10 − 2J(z),
η2(z) = η20 + J(z),
η3(z) = η30 + J(z). (31)

After some algebra (see Appendix), the Hamilton equa-
tions can be further reduced to yield an implicit solution
for J(z):

±N
2
z =

J∫
0

S(J ′)
dJ ′√
R (J ′)

, (32)

where both functions R (J) and S (J) are polynomials
in J .

For the generation of the ω3 mode from vacuum: η30 =
0, the functions R (J) and S (J) take a form:

R = 4µ2
1µ2µ3J (η10 − J)2 (η20 + J)

− (
A1 +A2J +A3J

2
)2
J2, (33)

S = a0 + a1J + a2J
2. (34)

As shown in the Appendix, cf. equation (A.21), the co-
efficients Am and am describe the linear and nonlinear
refraction coefficients of the medium.

Equation (32) matches a one-dimensional finite mo-
tion of a pendulum in an external potential. The allowed
range of J , corresponding to the region of classically al-
lowed motion of the pendulum, lies between zero and the
smallest positive root J1 of the polynomial equation:

R (J) = 0. (35)
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The second term in expression (33) for R (J) is never pos-
itive, so the smallest positive root of the polynomial is
bounded by η10. This reflects the fact that the conver-
sion process stops when the energy of the pump field is
entirely depleted. In order to reach this limit and thus
to attain maximum conversion efficiency, the second term
in (33) should be small, which corresponds to negligible
phase mismatch:

A1 +A2J +A3J
2 ≈ 0.

In order to see which values are required to approxi-
mately satisfy this condition, we have to analyze the co-
efficients Am.

The coherence preparation process requires large static
detuning δ30 and small ac Stark shift induced by the idler
ω2 wave: µ2η20/δ30 � µ1η10 (see discussion in Sect. 3.3).
Taking into account the relation µ2/µ1 � δ30, equa-
tion (23), the latter requirement restricts the intensity of
the ω2 wave: η20 � η10. Since in the down-conversion pro-
cess considered here the energy is taken only from the ω1

wave, this condition does not impose a real limitation.
Under these conditions, the non-vanishing coeffi-

cients Am and am are given by

A1 � −qδ30 (2λ+ δ2 + β21η10)
− µ2λ− µ3 (λ+ δ2 + β21η10) , (36)

A2 � q2δ30 + µ2q + µ3 (q − β22 − β23 + 2β21) , (37)

a0 � δ30 (2λ+ δ2 + β21η10) , (38)

a1 � − (µ2 + µ3) , (39)

where

q = 2∆k/N. (40)

The eigenvalue λ is a constant of motion which can thus
be found from equation (A.20):

λ = λ0 = −1
2

(δ2 + β21η10) +
1
2

√
(δ2 + β21η10)

2 + 4µ2
1η

2
10.

(41)

5 Solutions for undepleted pump field

We first consider the solution of equation (32) for small
density-length products Nz in the case of low conver-
sion efficiencies, i.e. the intensity of the generated field
is assumed to be much smaller than the intensity of the
pump ω1 wave:

η3 = J � η10.

We can then neglect the term A2J in expression (33), and
the term a1J in expression (34). In this case the solution

of equation (32) has a simple form:

η3(z) =
η20

1 − (
∆k′
2κ

)2 sinh2


κz

√
1 −

(
∆k′

2κ

)2

 , (42)

κ =
N

2

√
µ2µ3

δ30

µ1η10
2λ+ δ2 + β21η10

, (43)

∆k′ = −N
2
A1

a0

= ∆k +
N

2
µ3 (λ+ δ2 + β21η10) + µ2λ

δ30 (2λ+ δ2 + β21η10)
, (44)

which is similar to equation (11) obtained under the as-
sumption of constant probability amplitudes of the states
|1〉 and |2〉 (cf. Sect. 2).

The optimum conversion (parametric gain with large
rate κ) occurs when the phase mismatch ∆k′ is compen-
sated. Taking into account equation (41) for λ, the condi-
tion for phase matching reads:

2
N
∆k = −µ3 + µ2

2δ30

− µ3 − µ2

2δ30
(δ2 + β21η10)√

(δ2 + β21η10)
2 + 4µ2

1η
2
10

· (45)

It is very important to recognize that the parameters
δ2 and η10 are time-dependent (pulsed) in the SCRAP
process. Therefore, the r.h.s. of equation (45) is time-
dependent. Hence, it is impossible to phase-match the
generated and the pump waves for the duration of all
stages of the light-atom interaction process. This fact has
a detrimental effect for the full SCRAP procedure where
the pulse of large coherence is produced (see discussion
in Sect. 3.3 and Fig. 2). However, in the half-SCRAP case
with the permanent large coherence (Fig. 3), there are two
relatively long time intervals, in which the phase matching
condition does not depend on time.

At the early stage of the SCRAP process, when δ2 �
µ1η10, the condition is:

2
N
∆k ≈ − µ3

δ30
, (46)

and the nonlinear conversion coefficient takes the form:

κ1 ≈ κ0
µ1η10
δ2

, (47)

with the “maximum coherence” conversion coefficient κ0:

κ0 =
N

2

√
µ2µ3

δ30
· (48)

For later times, when the Rabi frequency of the pump field
exceeds the detuning: µ1η10 � δ2 and the adiabatic state
corresponds to the maximum coherence superposition, the
phase matching condition becomes:

2
N
∆k = −µ3 + µ2

2δ30
− µ3 − µ2

2δ30
β21√

β2
21 + 4µ2

1

, (49)
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and the conversion coefficient is

κ2 ≈ κ0
µ1√

β2
21 + 4µ2

1

· (50)

Phase matching according to equations (46, 49) can be
performed by controlling the background mismatch ∆k
through a suitable choice of the small angle of the ω2 wave
propagation direction from the z-axis. For radiation in the
visible spectral range, detuning δ30 ∼100 GHz and atom
densities N ∼ 1013 ÷ 1014 cm−3, the value of ∆k neces-
sary to compensate the resonance refraction contributions,
equations (46, 49), corresponds to an angle of 0.1−1 mrad.

It is obvious from equations (47, 50) that κ2 � κ1.
Therefore, it is advantageous to drive the frequency con-
version process when a large coherence is established, thus
to apply the pulse at ω2 when µ1η10 � δ2 and to choose
parameters satisfying the condition equation (49).

When phase matching is not maintained, the quantity
1−(∆k′/2κ)2 is always negative (∆k is much smaller than
the resonant contributions to ∆k′), and there is no expo-
nential growth but sinusoidal oscillations of the generated
intensity with respect to Nz. However, for µ1η10 � δ2
(maximum coherence) the quantity |1− (∆k′/2κ)2| in the
denominator of equation (42) is of the order of unity,
whereas for δ2 � µ1η10 (atoms are in the ground state) we
have |1 − (∆k′/2κ)2| ∼ (∆k′/2κ)2 � 1, and correspond-
ingly, conversion is tiny.

These considerations, similar to those of Section 2
treating the nonlinear conversion with fixed probability
amplitudes, demonstrate once again that large atomic co-
herence is preferable whatever the method of the prepa-
ration might be.

Thus, in the case of good phase matching, we observe
exponential growth of the generated intensity. The ques-
tion arises up to which values the generated intensity will
grow and what the limiting factors are? Since the pump
wave will be depleted, one may also expect that the prepa-
ration of large atomic coherence will not be efficient any-
more. By then it is not clear how this will influence the
frequency conversion process. In order to answer these
questions we need to solve the complete propagation prob-
lem taking into account the depletion of the pump field.

6 General solutions for resonant four-wave
mixing

The solution of the propagation equation (32) is deter-
mined by the roots of cubic equation (35), in particular,
by their signs and relation between their modules. Under
the condition η20 � η10, the roots of (35) can be well
approximated by:

x1 =
1 − b1
1 + b2

, (51)

x2 =
1 + b1
1 − b2

, (52)

x3 = −η20
η10

1
1 − b21

, (53)

where
xj =

Jj

η10
·

The quantities b1, b2:

b1 =
A1

2µ1η10
√
µ2µ3

, b2 =
A2

2µ1
√
µ2µ3

determine the phase mismatch induced by linear refraction
and Kerr effect, respectively.

Since η20/η10 � 1 we have in most relevant cases:
|x3| � |x1|, |x2|.

Evaluation of the integral in equation (32) gives the
following general dependence for x(z) ≡ J (z) /η10 in im-
plicit form:

± κ′z + χ0 = F [γ (x) , p]

− a1η10
a0

r {F [γ (x) , p] − dΠ [γ (x) , n, p]} , (54)

where χ0 is an integration constant, and F (γ, p) and
Π (γ, n, p) are the elliptic integrals of the first and third
kind, respectively [15]. κ′ is the nonlinear conversion co-
efficient defined as

κ′ = κ0
µ1η10δ30

a0

√
|1 − b21|

(
1 +

|x3|
|x1|

)
1
s
· (55)

The parameters of the elliptic integrals γ(x), n, p as well
as the factors r, s, d depend on the signs of expressions
(1 − b21) and (1 − b22).

Due to the condition η20/η10 � 1, the expression (54)
can be inverted to give the explicit solutions presented
below.

6.1 Compensation of both linear refraction and Kerr
effect: b2

1 < 1 and b2
2 < 1

For b21 < 1 and b22 < 1 the relevant parameters are:

γ (x) = arcsin

√
x (x1 + |x3|)
x1 (x+ |x3|) ,

p =

√
x1 (x2 + |x3|)
x2 (x1 + |x3|) , n =

x1

x1 + |x3| ,

d = 1, s = 1, r = |x3| . (56)

In this case, the solution is as follows:

x (z) =
x1 |x3| sn2 [κ′z; p]
|x3| + x1cn2 [κ′z; p]

, (57)

where sn[κz; p] and cn[κz; p] are the Jacobi elliptic sine
and cosine functions, respectively [15].

In this case, the parameter p is close to unity, so
that sn[κz; p] → tanh (κz) and cn[κz; p] →sech(κz). Thus,
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Fig. 4. Spatial evolution of J (z) at given retarded time
τ in the case of compensated linear refraction. Parameters:
η20/η10 = 0.01, b1 = 0.1. The solid line corresponds to equa-
tion (57): b2 = 0.5. The dotted line corresponds to equa-
tion (59): b2 = 8, s = 5.

for small density-length products Nz such that κ′z �
ln (x1/ |x3|) the solution (57) is reduced to

x(z) = x3 sinh2 (κ′z) ,

which coincides exactly with the solution obtained under
the condition of undepleted pump field, see equation (42).

For larger Nz, equation (57) has to be used. The form
of this solution is shown by the solid line in Figure 4. The
maximum value of x(z) attainable in this regime is given
by x1 corresponding to the intensity of the generated ω3

wave given by:

(η3)max = Jmax = η10
1 − b1
1 + b2

,

which is of the order of η10. Thus, almost complete conver-
sion can be achieved in this regime. This maximum value
is reached at the distance z = (κ′)−1

K (p) with K (p) be-
ing a complete elliptic integral of the first kind, which can
be approximated for p ≈ 1−|x3| (x2 − x1) / (x1x2) → 1 as

K (p) ≈ (1/2) ln
(

16x1x2

(x2 − x1) |x3|
)
·

6.2 Compensation of linear refraction b2
1 < 1,

but large Kerr-induced refraction b2
2 > 1

In this case, the parameters are as follows:

γ (x) = arcsin

√
|x2| (x1 − x)
x1 (x+ |x2|) ,

p =

√
x1 (|x2| − |x3|)
|x2| (x1 + |x3|) , n = − x1

|x2| ,

d = 1 − n, s = 1 +
a1η10

a0

√−n, r = |x2| . (58)

The solution reads:

x (z) =
x1 |x3| sn2 [κ′z; p]

|x3| + x1
2|x2|

x1+|x2|cn
2 [κ′z; p]

· (59)

The form of the solution is similar to the previous case,
except for the prefactor at the cn2 [κ′z; p] function in the
denominator. The spatial evolution of the generated in-
tensity in this case is plotted as a dotted line in Figure 4.

We observe a parametric gain at the initial stage of
the propagation, at κ′z � ln( x1

|x3|
|x2|

x1+|x2|):

x(z) = x3
x1 + |x2|

2 |x2| sinh2 (κ′z) . (60)

The maximum of x(z) from equation (59) is again given
by x1. However, for large “Kerr coefficient” b2 � 1, the
value of x1 corresponds to an intensity of the generated
ω3 wave that is much smaller than η10:

(η3)max ∼ η10
b2

· (61)

It is also important to note that the conversion coeffi-
cient κ′ here is smaller than in the “compensated case”
by a factor of s ∼ (

µ2,3/µ1δ30
√−n) � 1. Therefore, the

conversion proceeds much slower, see Figure 4.

6.3 No compensation of linear refraction: b2
1 > 1

For b21 > 1 and b22 < 1 the elliptic integral parameters are:

γ (x) = arcsin

√
x (x3 + |x1|)
x3 (x+ |x1|) ,

p =

√
x3 (x2 + |x1|)
x2 (x3 + |x1|) , n =

x3

x3 + |x1| ,

d = 1, s = 1, r = |x1| . (62)

For b21 > 1 and b22 > 1:

γ (x) = arcsin

√
|x2| (x3 − x)
x3 (x+ |x2|) ,

p =

√
x3 (|x2| − |x1|)
|x2| (x3 + |x1|) , n = − x3

|x2| ,

d = 1 − n, s = 1, r = |x2| . (63)

In both cases p� 1 and n� 1. This permits a reduction
of the solution to the form:

x (z) = |x3| sin2 (κ′z) . (64)

The maximum of x (z) is |x3|, i.e. Jmax = η20/
∣∣1 − b21

∣∣.
Therefore, this solution demonstrates the crucial influence
of the phase mismatch induced by linear refraction. If this
contribution to the phase mismatch is not compensated,
the maximum intensity of the generated ω3 wave is always
limited by the input intensity η20 of the idler wave.
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7 Compensation of phase mismatch

As we have shown in the previous section, it is crucial
to compensate the mismatch induced by linear refraction
b21 < 1 in order to get large conversion. Only then expo-
nential gain occurs at the initial stage of the process and
the maximum generated intensity will be much larger than
the input intensity η20 of the idler ω2 wave. At the same
time, it is desirable to make the Kerr-induced mismatch
as small as possible.

7.1 Compensation of the phase mismatch induced
by linear refraction

In general, the condition b21 < 1 yields:

y0 − 1√
1 + d2

2

< y < y0 +
1√

1 + d2
2

, (65)

where the “phase-matching-tuning parameter” y is:

y ≡ qδ30√
µ2µ3

· (66)

The value of y0:

y0 = −1 −m

2
√
m

d2√
1 + d2

2

− 1 +m

2
√
m

(y0 < 0) , (67)

with notations

m =
µ2

µ3
, (68)

d2 =
β21

2µ1
+

δ2
2µ1η10

, (69)

corresponds to the condition given by equation (45) where
b1 = 0 (complete compensation of the linear refraction).

At the limits

y1,2 = y0 ∓ 1/
√

1 + d2
2 (70)

of the desirable range of y, we have b1 → ±1. From equa-
tions (51–53) we see that the root x1 determining the max-
imum conversion efficiency becomes very small at these
values of y. Therefore, it is not favorable to set the work-
ing point close to y1,2.

We stress an important consequence of the inequal-
ity (65): for any δ2 and µ1η10, the quantity y < 0 as well
as its absolute value is of the order of one: |y| ∼ 1 in the
range given by equation (65). Therefore, q ∼ µ2,3/δ30 and

|b2| ∼ µ2,3

µ1δ30
� 1.

The Kerr-induced phase mismatch is large in the range of
parameters q and δ30, where linear refraction is compen-
sated. Thus it seems impossible to simultaneously com-
pensate both contributions of the phase mismatch.

7.2 Compensation of the phase mismatch induced
by the Kerr effect

Condition b22 < 1 yields:∣∣∣∣y
(
y +

1 +m√
m

)∣∣∣∣ < 2µ1δ30√
µ2µ3

· (71)

Due to 2µ1δ30/
√
µ2µ3 � 1, the above condition can be

fulfilled by

|y| < 2µ1δ30
µ2 + µ3

(� 1) , (72)

i.e., by y ≈ y3 = 0 (or equivalently, by q ≈ 0), and by∣∣∣∣y +
1 +m√
m

∣∣∣∣ < 2µ1δ30√
µ2µ3

, (73)

that is by y ≈ y4 = − (1 +m) /
√
m (or equivalently, by

qδ30 ≈ − (µ2 + µ3), see Eq. (49)) in a very small range
±2µ1δ30/ (µ2 + µ3). The values for y3,4 are fixed by atomic
parameters and cannot be tuned.

Further, it is easy to show that

y4 ≤ y1 < y2 < 0. (74)

We see that the only possibility to satisfy both b21 < 1
and b22 < 1 is to make the value y1 close to ym and to
tune y to the vicinity of y1 (and ym). However, as we have
discussed in the previous subsection, it is not favorable to
work with y close to y1 since the root x1, which determines
the maximum conversion, becomes very small. Moreover,
the condition y1 = ym reduces to

d2 =
(1 −m)
2
√
m

, (75)

what can be realized only at one instant of time, because
d2 is a time-dependent function, see equation (69). Then,
only a very narrow part of the generated pulse may, in
principle, be phase-matched to the pump waves, and any
small deviation from the above condition given by equa-
tion (75) will destroy the phase matching.

8 Spatio-temporal evolution. Total conversion
efficiency

As we have seen before, there are different phase match-
ing regimes at different stages of the SCRAP process. If
we choose to compensate the linear refraction by satis-
fying the relationship (49), then at the beginning when
δ2 � µ1η10 the linear refraction is large: |b1| > 1. When
the pump intensity reaches the values µ1η10 � δ2 the
mismatch is completely compensated. Therefore, it is fa-
vorable to start the conversion process, i.e., to apply ω2

pulse at time instants when µ1η10 � δ2. However, the
delay of ω2 pulse should not be too large since the con-
version process is also determined by the overlap between
the pump ω1 and the idler ω2 pulses. In order to illus-
trate these processes, we show graphical representation
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Fig. 5. Spatio-temporal evolution of generated intensity
J (z, τ ) (normalized to the maximum of η10) for the half-
SCRAP preparation and linear refraction compensation at
maximum coherence according to equation (49). The retarded
time τ is in units of the duration T1 of the pump ω1 pulse, and
the propagation distance z is in units of conversion length κ−1

0

for the ideal maximum coherence case, equation (48). The
parameters are µ2/µ3 = 7.95, β21/2µ1 = 0.1 (Kr atoms),
µ2/ (2µ1δ30) = 20. The temporal profile of the Stark, pump
and idler pulse is Gaussian with the following parameters: max-
imum of detuning and pump Rabi frequency: δm

2 /Ωm
10 = 2,

static detuning δ20 = 0, ηm
20/ηm

10 = 0.005, center of the Stark
pulse ts/T1 = −1.5, duration of the Stark pulse Ts/T1 = 1,
duration of the ω2 pulse T2/T1 = 0.5, delay of the ω2 pulse
t2/T1 = −1.

of our analytical results in Figures 5–7. Figures 5 and 6
demonstrate the evolution of the generated intensity in
the case of the permanent coherence preparation by the
half-SCRAP, and Figure 7 – for the case of pulsed large
atomic coherence induced during the population transfer
in the full SCRAP process.

In Figure 5, with the idler ω2 pulse arriving before
the pump ω1 pulse, sinusoidal oscillations occur along the
propagation path for the early part of the generated pulse.
This corresponds to equation (64) for the case of uncom-
pensated phase mismatch. As the pump intensity η10 in-
creases and the interaction parameters get closer to the
phase matching condition equation (49) and |b1| becomes
sufficiently small: |b1| < 1, equation (59) is applied. Dur-
ing this time interval intensities J much larger than η20 do
occur. We recall that η20 is the maximum intensity that
can be obtained without elimination of linear refraction.
However, since the Kerr-induced mismatch is large, the
maximum generated intensity η3 = J is still much smaller
than η10 (it is given by η10/b2, Eq. (61)), and the rate of
intensity growth is quite small.

Figure 6 shows the variation of the intensity J with
τ and z, when the phase matching takes place over the
entire duration of the generated pulse. We see from Fig-
ures 5 and 6 that the maximum of the generated pulse
always coincides with the maximum of the pump ω1 pulse
and not with that of the idler ω2 pulse. This fact directly
follows from the physics of the down-conversion process in
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Fig. 6. Evolution of J (z, τ ) for the half-SCRAP preparation
and compensation of linear refraction at maximum coherence
by equation (49). Parameters are the same as in Figure 5 ex-
cept the delay of the ω2 pulse t2/T1 = 0. For better visibility,
the time and length axes have been reversed as compared to
Figure 5.
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Fig. 7. Evolution of J (z, τ ) for the temporally large coher-
ence induced during the full SCRAP process. Linear refraction
is compensated for maximum coherence by equation (49). Pa-
rameters are: δm

2 /Ωm
10 = 10, δ20/Ωm

10 = −5, ts/T1 = −1.7,
Ts/T1 = 2, t2/T1 = 0. Other parameters are the same as in
Figure 5. For better visibility, the time and length axes have
been reversed as compared to Figure 5.

which the ω2 field serves simply as a seed wave, while the
energy is taken only from the pump ω1 field. However, the
temporal overlap between the pump and the idler pulses
also influences the conversion process. Initially, there is
exponential growth with x(z) ∼ x3 sinh2 (κ′z) ∼ η20/η10,
equation (60). Thus the generated intensity is determined
mainly by the idler field: η3 ∼ η20 sinh2 (κ′z). Later, the
maximum of the generated pulse is shifted towards the
maximum of the ω1 pulse. This dynamics leads, in gen-
eral, to a temporal modulation of the generated pulse.
The best conditions are obtained when the maxima of the
pump ω1 and the idler ω2 pulses coincide (Fig. 6). In this
case, conversion proceeds more or less homogeneously and
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Fig. 8. Spatial dependence of the total conversion effi-
ciency W , equation (76), for different delays of the ω2 pulse for
the half-SCRAP coherence preparation: solid line – t2/T1 = 0,
dotted line – t2/T1 = +1, dashed line – t2/T1 = −1. The values
for all other parameters are the same as in Figure 5. The lower
thin solid line corresponds to the transient large coherence in-
duced during the full SCRAP process, Figure 7.

the temporal shape of the generated pulse is smooth at all
propagation distances.

When the large atomic coherence persists only in tran-
sient during the full SCRAP process, efficient generation
occurs during a short time interval around the maximum
of the pump pulse (see Fig. 7). This interval is determined
by the range where the phase matching, |b1| < 1, occurs.

As we see, the temporal shape of the generated pulse
is in general quite complicated. That is the output pulse is
not transform-limited. An important quantity to charac-
terize the conversion process is the total energy conversion
efficiency, defined as

W (z) ≡

∫
dt ω3η3(z, t)∫
dt ω1η10(z, t)

· (76)

The evolution of W (z) is shown in Figure 8 for three dif-
ferent delays of the idler pulse in the case of permanent
coherence. The largest conversion efficiency is obtained for
coinciding ω1 and ω2 pulses. Moreover, the maximum of
W (z) occurs at propagation distances smaller than that
for the case of delayed pulses. However, the total conver-
sion efficiency is not substantially different for different de-
lays because the maximum of W (z) is determined mainly
by ηm

10/b2, i.e., by the parameters of the pump pulse. The
thin solid line in Figure 8 displays the conversion efficiency
in the case of pulsed large coherence. As expected, the ef-
ficiency is much smaller than in the “permanent ρ12” case
because of two reasons. First, the nonlinear conversion co-
efficient κ, equation (12), is large in the transient regime
during a short time slot. Second, more important, phase
matching, as discussed above, can be achieved only in an
even shorter time interval.

9 Conclusions

We have discussed the analytic solutions of a four-wave
mixing process involving preparation of an atomic system
driven to maximum coherence by the technique of Stark
chirped rapid adiabatic passage (SCRAP). The maxi-
mum coherence permits conversion efficiencies, exceed-
ing the case of conventional nonlinear optics by a large
factor. However, the conversion efficiency does not reach
unity, because of phase mismatch due to the linear and
the intensity-dependent index of refraction. It is practi-
cally impossible to compensate both parts simultaneously.
Thus, the conversion efficiency gets maximum when the
linear part of the phase mismatch is reduced to zero. This
can be done by the controlling the residual phase mis-
match ∆k through the buffer gas or non-collinear pulse
propagation. Unfortunately, the Kerr-induced mismatch
is large and limits the rate and the maximum achievable
efficiency of the conversion. Still the maximum atomic co-
herence, prepared by SCRAP, permits efficient generation
of strong short-wavelength radiation. In principle, the gen-
erated radiation is broadly tunable – the detuning δ30 may
be changed provided it is still larger than Rabi frequencies
and ac Stark shifts. However, the phase matching condi-
tion equation (49) has to be satisfied. Therefore, tuning of
δ30 requires modified compensation of the residual phase
mismatch ∆k.
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Appendix A: Hamiltonian approach

Here we present an outline of the Hamiltonian approach
in nonlinear optics [8–10]. This approach is based on the
representation of the medium polarization P as a partial
derivative of the time-averaged free energy density of a
dielectric with respect to the electric field strength E [16]:

P = −
〈
N
∂Ĥ

∂E

〉
, (A.1)

where 〈...〉 denotes quantum-mechanical averaging, and Ĥ
is the single-atom interaction Hamiltonian. With the field
given by equation (1), we write:

P = −
〈
N

∑
j

∂Ĥ

∂E∗
j

exp(−i(ωjt− kjz)) + c.c.

〉
, (A.2)

thus the propagation equation (2) becomes:

∂Ej

∂z
= −i2π

ωj

c
N

〈
∂Ĥ

∂E∗
j

〉
· (A.3)
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When the atomic system adiabatically follows the instan-
taneous eigenstate |ψ0〉, we find〈

∂Ĥ

∂E∗
j

〉
=

〈
ψ0

∣∣∣∣∣ ∂Ĥ∂E∗
j

∣∣∣∣∣ψ0

〉
= �

∂λ0

∂E∗
j

·

Hence the propagation equation can be written as:

∂Ej

∂z
= −i2π

�ωj

c
N
∂λ0

∂E∗
j

· (A.4)

In the following discussion it is useful to express the field
amplitude Ej in terms of photon flux ηj , equation (8), and
phase ϕj . Separating the real and imaginary parts, we find
from equation (A.4):

∂ηj

∂z
= −∂H

′

∂ϕj
,

∂ϕj

∂z
=
∂H′

∂ηj
· (A.5)

These equations have the form of Hamilton equations of
classical canonical mechanics with action and angle vari-
ables ηj , and ϕj , “time” z, and the Hamiltonian function
H′ = 1

2Nλ0.
One can see from the eigenvalue equation (27) that λ0

and, hence H′, depend on the field phases ϕj only through
the relative phase ϕ. Therefore, we have:

∂H′

∂ϕ1
= −2

∂H′

∂ϕ2
= −2

∂H′

∂ϕ3

(
= 2

∂H′

∂ϕ

)
· (A.6)

An immediate consequence of this symmetry of H′ is the
existence of constants of motion. Substituting the above
equations (A.6) into the first line of equations (A.5) yields
the well-known Manley-Rowe relations [12]:

∂η1
∂z

= −2
∂η2
∂z

= −2
∂η3
∂z

, (A.7)

which correspond to two independent constants of motion:

η1 + 2η3 = η10 + 2η30,
η1 + 2η2 = η10 + 2η20. (A.8)

Here ηj0 = ηj(z = 0) are the photon flux values at the
entrance to the medium. Taking into account the multi-
photon resonance condition (25), one finds furthermore
that the total intensity of the elm. fields is conserved:
I1 + I2 + I3 = const(z). The relations (A.8) enable us
to re-write ηj as:

η1(z) = η10 − 2J(z),
η2(z) = η20 + J(z),
η3(z) = η30 + J(z). (A.9)

The function J(z) characterizes the amount of energy ex-
change between the waves and has the initial condition
J(z = 0) = 0.

Thus the original problem with six amplitude and
phase variables can be reduced to two variables J and
ϕ by a canonical transformation. This leads to

∂J

∂z
= −∂H

∂ϕ
, (A.10)

∂ϕ

∂z
=
∂H
∂J

, (A.11)

with new Hamiltonian function

H =
1
2
Nλ0 +∆kJ ≡ 1

2
Nλ. (A.12)

As can be seen from equations (A.12, 27), H (or λ) does
not depend on the coordinate z explicitly. Therefore, H
(or λ) is a fourth constant of motion expressing the con-
servation of the energy density of the medium with respect
to z.

To solve the remaining two equations of motion for
J(z) and ϕ(z), the Rabi-frequencies Ωj are expressed in
terms of ηj0 and J , and the characteristic equation (27) is
written in the form

G(λ, J) = g(J) cosϕ. (A.13)

Differentiating both sides with respect to ϕ yields

∂G

∂ϕ
=
∂G

∂λ

∂λ

∂ϕ
= −g sinϕ = ±

√
g2 −G2.

Substituting this relation into equation (A.10), we find:

∂J

∂z
= ±N

2

√
g2 −G2

∂G/∂λ
· (A.14)

The choice of the sign in equation (A.14) depends on the
sign of sinϕ at z = 0. Integration of equation (A.14) gives
an implicit solution for J(z):

±N
2
z =

J∫
0

∂G(J ′)
∂λ

dJ ′√
g2 (J ′) −G2 (J ′)

· (A.15)

Both functions g2 −G2 and ∂G/∂λ are polynomials in J :

g = −2µ1
√
µ2µ3

×
√

(η10 − 2J)2 (η20 + J) (η30 + J), (A.16)

G = G0 +
3∑

m=1

AmJ
m, (A.17)

∂G

∂λ
=

2∑
m=0

amJ
m. (A.18)

Therefore, equation (A.14) describes a one-dimensional fi-
nite motion of a pendulum in an external potential. The
solution is in general given by some combination of elliptic
functions [15] with parameters determined mainly by the
roots Jn of the polynomial equation:

g2 (J) −G2 (J) = 0. (A.19)
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The eigenvalue λ is a constant of motion (cf. Eq. (A.12)),
and can thus be found from the characteristic equa-
tion (A.13) with parameters taken at the medium entrance
z = 0:

G0 (λ) = g(z = 0) cosϕ(z = 0). (A.20)

Thus, we have reduced the propagation problem to solving
two algebraic equations: (A.20) for λ and (A.19) for the
roots Jn. If this can be done explicitly, the Hamiltonian
method provides an analytical solution to the propagation
problem. But even if an explicit solution is not possible, it
considerably simplifies numerical calculations. The physi-
cal meaning of the coefficients Am and am can be drawn
by considering the canonical equation (A.11) for the rela-
tive phase:

∂ϕ

∂z
=
N

2
∂λ

∂J
=
N

2
∂G/∂J

∂G/∂λ
=
N

2
A1 + 2A2J + 3A3J

2

a0 + a1J + a2J2
·

(A.21)
One recognizes that the Am and am describe the lin-
ear and nonlinear refraction coefficients of the medium.
E.g. if J is sufficiently small, the first term NA1/2a0 on
the right-hand side of equation (A.21) can be identified
with the phase mismatch induced by the linear refraction,
including both contributions from the three-level inter-
action and the residual mismatch ∆k. The second term
(N/2a0) (2A2 − a1A1/a0) J in the expansion over J cor-
responds to the phase mismatch due to Kerr effect, and
the next terms are responsible for the higher-order contri-
butions.
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